XLT86™
8080 to 8086 Assembly Language Translator

USER'S GUIDE
Copyright © 1981

Digital Research, Inc.
P.O. Box 579
801 Lighthouse Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

All Rights Reserved

All Information Presented Here is Proprietary to Digital Research

COPYRIGHT

Copyright © 1981 by Digital Research. All rights reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language,
in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of Digital Research, Post Office Box 579, Pacific Grove, California,
93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission to include the example
programs, either in whole or in part, in his own programs.

DISCLAIMER
Digital Research makes no representations or warranties with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication and to make changes from time to time in the content
hereof without obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS
CP/M is a registered trademark of Digital Research. CP/M-86, CP/NET, LINK-80, MP/M, MP/M-86,
RMAC, XLT86 and PL/1-80 are trademarks of Digital Research. Z80 is a registered trademark of Zilog,
Inc.

The XLT86 User's Guide was prepared using the Digital Research TEX-80 Text Formatter and was printed
in the United States of America by Commercial Press/Monterey.

First Printing: September 1981

All Information Presented Here is Proprietary to Digital Research ii

FOREWORD

XLT86™ is a Digital Research software product that aids in the translation of 8080 assembly language
programs to equivalent 8086 programs. XLT86 takes the CP/M™ and MP/M™ environment into account,
so that translated programs operate properly under both CP/M-86™ and MP/M-86™. XLT86 can also be
used as a teaching tool by examining the output when XLT86 is applied to existing 8080 programs. Unlike
other 8086 translators, XL T86 uses global data flow analysis techniques to determine 8080 register usage
and reduce the number of generated 8086 instructions.

The XLT86 translator is available for operation under CP/M and MP/M for the 8080, 8085, and Z800
microprocessors with a minimum 40K Transient Program Area (TPA). XLT86 requires a 64K CP/M
system to effectively translate any significant 8080 programs. Using a 4Mhz Z80 microprocessor, XLT86
translates programs at approximately 120 to 150 lines per minute, depending upon backup storage access
speed. XLT86 is written in PL/1-80™ and thus can be adapted for use on computer systems that support
Subset G. Specifically, XLT86 is available for cross-development on the Digital Equipment Corporation
VAX 11/750 or 11/780 minicomputer, operating with the standard DEC VMS software. However,
programs are supplied in machine code form, so it is not necessary to own PL/I-80 or any of its subsystems
to operate XLT86.

The XLT86 system components, including the files XLT86.COM, XLTOO.OVL, and XLT01.0VL, are
distributed in IBM-compatible single density disk form. Before operating XLT86, copy these system
components to a working disk and save the distribution disk for archive purposes. If the working disk
medium can be dismounted, it must be marked with the notice shown below to properly comply with the
Software License Agreement:

Copyright © 1981
Digital Research, Inc.

This User's Guide presents the overall translation process, along with operator interface and command
syntax. This manual also describes the format of the translated program, including the details of the 8080 to
8086 operation code translation.

All Information Presented Here is Proprietary to Digital Research iii

TABLE OF CONTENTS

Section1 THE TRANSLATION PROGCESSccooiiirniiiniieenesiees e 1
1.1 INPUL AN QULPUL FIIES ...ttt st sneereene e 1
1.2 TranSlation PRaSEScc.oiiiiiiii ittt sttt et st b et es e e e b e b sbeereaneeneas 1

Section2 TRANSLATION PARAMETERScooiiiiiteitee sttt 3
21 ParaMETET SYNTAXcviiriiiiitiiiiiet ettt 3
2.2 The B (BIOCK Trace) Parameter........cocceiiiiiieiiiieiietisie ettt 3
2.3 The C (COMPACE) PAFAMETETc.eiiiiitiieiiiteeeie ettt ettt er e 4
2.4 The J (JUMP) PArGMELETcviiiteietiiteiete itttk b ettt eb e sr e en e 5
N I O I T g =TT 1] =) S 5
2.6 The N (NUMDBE) PAraGmeLErccviiieiieiieiieesiesteseesieesteeste et e e st e sta e teesteesaesneesnaesaeenseenseeneesnee e 6
2.7 The R (RELUMN) PAramELer........ccvevieieiiie e se ettt steeste e e et teete e e e e sraesaeenaeeneeeneensee e 6
2.8 The S (SegMENL) PAraMELEr......c.cccviiiiiie ettt e e e ettt te e e sreesteesaeeneeeneenree e 6
2.9 THE B0 PArAMEIENc.iiviiciiireieiesr ettt ettt r e r e r e r et n e r e 6
2.10 THE NO PArGMELETeeiiiireiciiir et r e r e r e nr e r e nn e enenn e arennas 6

Section3 TRANSLATED PROGRAM FORMAT AND CONTENTcoviieiieresrsiseeee e 9
3.1 Translated Program FOMMALccoueiiiiiiiiiieieee ettt ane s 9
3.2 Translated Program CONENT.........coueiiiiiiiiieiiteiese bbbttt 10

Section 4 XLT86 ERROR IMESSAGESooieiiiiie sttt sttt sae st ste st enaeneeneenae e 17
4.1 Pseudo-assembly Process Erfor IMESSAGESccciureriririerieenienieiesiesieie sttt sre e 17
4.2 Translate-86 ErrOr IMESSAGEScuiuerieriiterieiisie ettt sttt sttt be et b bbbttt sttt sb et b e 17
4.3 MEMOTY OVEITIOW ... et e e e e e s te e teebesaeesaeenreenreens 18

Appendix A SAMPLE PROGRAM TRANSLATIONS ..ottt 19

All Information Presented Here is Proprietary to Digital Research %

XLT86 User's Guide 1.1 Input and Output Files

Section 1
THE TRANSLATION PROCESS

1.1 Input and Output Files

XLT86 reads an 8080 program from a file with type ASM and produces a file of type A86 containing the
equivalent translated 8086 assembly language program. The filename for the 8080 source program, as well
as filenames for all output files from XLT86, is taken from the command line typed by the operator. For
example, the console command:

XLT86 DUMP

executes the XLT86 program using the file "DUMP.ASM" as input. The translation produces the output
file "DUMP.A86".

The 8080 source program must be in a form acceptable to the standard Digital Research assembly language
translators ASM, MAC, or RMAC. XLT86 processes conditional assembly statements, and produces an
output program that results from evaluation of the particular conditions included in the 8080 program.
However, macro definitions, macro invocations, and repeat loops are not altered in the translation. To
properly translate programs that include macros or repeat loops, first assemble the programs under MAC or
RMAC to produce a printer listing file of type PRN. Rename this PRN file to type ASM and edit the file to
remove the beginning column positions, resulting in a file acceptable as input to XLT86. The A86 output
file is now in a form acceptable to the Digital Research ASM86 assembler, requiring little or no
modification for execution under CP/M-86 and MP/M-86.

XLT86 produces two additional files: a PRN file and a $$$ file. A file of type PRN contains error lines and
messages along with optional listing and trace information. The PRN file is in a form suitable for listing on
the system printer and contains embedded form-feed and tab characters. A temporary file of type 3 is
also created during translation. This temporary file is automatically deleted upon normal completion of
XLT86.

The XLT86 program consists of a "root module" called XLT86.COM, which is loaded and executed when
you enter the XLT86 command line shown above. There are two additional "overlays" called XLTOO.OVL
and XLTO01.0VL that must be present on your default disk drive. These two overlays are automatically
loaded and executed at the appropriate time during the translation.

1.2 Translation Phases

The translation itself takes place in five phases. Each phase has a specific name that appears at the console
during translation so that the operator can monitor the progress of XLT86. Table 1-1 lists the phase names.

Phase Meaning

Symbol Setup Determines the location of each
symbol in the 8080 source program.

Setup Blocks Determine the '""Basic Blocks"
necessary for the data flow
analysis.

Join Blocks Construct a "Directed Graph"

connecting each basic block,
corresponding to program flow of
control.

List Blocks Produce an optional list of Basic
Blocks following flow analysis
showing register and flag usage
for each 8080 instruction.

All Information Presented Here is Proprietary to Digital Research 1

XLT86 User's Guide 1.2 Translation Phases

Phase Meaning

Translate-86 Translates the 8080 instructions
to 8086 form, using the
information gathered by the flow
analysis.

Table 1-1. XL T86 Translation Phases
The command line:
XLT86 DUMP

activates the XL T86 translator using the DUMP.ASM program as input. The default action of XLT86
prints the name of each phase at the console as the translation proceeds, as shown below.

Symbol Setup
Setup Blocks
Join Blocks
List Blocks
Translate-86

The files processed by the "XLT86 DUMP" command are shown in Figure 1-1, below.

Source Output
DUMP . ASM » DUMP.A86
> XLT 86
Temp > Print
DUMP.$$$ e »| DUMP.PRN

Figure 1-1. Processed Files

All files are placed on the drive specified by the operator as the prefix on the source filename. In the above
example, all files are placed on the current default drive, which must also contain the XLT86 program
along with its overlays. An alternative form:

XLT86 B:DUMP
overrides the default drive and obtains the source file from drive B. XLT86 creates the output, temporary,
and print files on drive B as well. When several drives are available, it may be advantageous to place the

various files on separate disks. In this case, you must use XLT86 "parameters," described in the following
section, to override the default values.

All Information Presented Here is Proprietary to Digital Research 2

XLT86 User's Guide 2.1 Parameter Syntax

Section 2
TRANSLATION PARAMETERS

2.1 Parameter Syntax

Several XLT86 parameters can be included in the command line by the operator or embedded within the
8080 source program to control the translation process. Parameters are grouped together into a parameter
list enclosed within square brackets:

[Pl p2 .. pn]

where p1 through pn denote one or more parameters optionally separated by blanks. When included on the
command line, the XLT86 invocation appears as follows:

XLT86 filename [pl p2 .. pn]

When included within the source program, the opening bracket of the parameter list must begin in the first

column position. The parameters denoted by p1 through pn are one or two character sequences in upper- or
lower-case, with optional intervening blanks, as listed in Table 2-1, below.

Parameter Meaning

AX Place the A86 file on drive x where x = A, B, P.

B Produce a list of Basic Blocks in the PRN file.

C Assume the 8086 "compact model™ for execution.

J Translate conditional jumps to short
conditionals.

L Send the PRN file directly to the system
printer.

N Show the line and statement number being
processed.

P Place the PRN file on drive x where x = A, B, P.

R Assume all flags active at subroutine returns.

S Assume non-overlapping 8086 code and data
segments.

T Place the $%$$ file on drive x where x = A, B,
P.

80 Create an 8080 assembly listing in the PRN File.

86 Create an 8086 line and statement listing.

Table 2-1. Translation Parameters

2.2 The B (Block Trace) Parameter

The A (A86), P (PRN), and T (TMP) parameters allow you to select alternate disk drives for use during the
translation process when only limited disk space is available on each drive. Otherwise, disk drives are
selected as described above.

The B (Block Trace) parameter provides a trace in the PRN file showing register usage information
collected by the data flow analyzer. This parameter is not normally selected since the trace information is
of no particular value unless you are interested in detailed register usage. The B parameter trace consists of
a sequence of register usage tables for each Basic Block in the form shown below.

All Information Presented Here is Proprietary to Digital Research 3

XLT86 User's Guide 2.3 The C (Compact) Parameter

Block At O11E (subr), A86 = 083F
Entry Active: B-D-HL-AOZSPl Exit Active: BCDEHL-------

stmt# opcode uses op vl v2 opcode kills live regs
23 | ——————- AOZSPI PUSH PSW| | -———————————— B-D-HL-A----—-
24 | ——————- A-———- MOV E Al -—-E--—-—-—--— B-DEHL------—-
25 | ————— - ———— MV C 05| C-—-—--————- BCDEHL------—-
P CALL | 0005 | = | -——————————— BCDEHL——----—

The Basic Block address in the original 8080 program is listed and the type of block is identified. The
block type is "subr" for subroutines, "code" for main-line code, and "data" for data blocks. The A86 address
is an approximation of the corresponding 8086 address used to determine short and long branch jump
ranges. The remaining information shows register and flag use at block entry and at each instruction within
the block. The registers and flags are displayed as a vector of letters and hyphens, where each letter
represents the presence of a register or flag in the display, and each hyphen signifies that the corresponding
register or flag is absent in the vector. Given that all registers and flags are present, the display appears as
follows:

BCDEHLMAZOSPI

Table 2-2 lists the letter denotations of the above display.

Letter Meaning

B Register B, or high(BC)

C Register C, or low (BC)

D Register D, or high(DE)

E Register E, or low (DE)

H Register H, or high(HL)

L Register L, or low (HL)

M Register M, memory operand

A Register A, 8-bit Accumulator
0 overflow Flag, carry or borrow
V4 Zero Flag

S Sign Flag

P Even Parity Flag

| Interdigit Carry Flag

Table 2-2. Letter Denotations for Registers and Flags

The registers active upon entry are listed first. In the example shown above, the data flow analysis has
determined that the B, D, and HL registers, along with all flag registers, are in use upon entry to the block.
The active registers following this block are then listed, consisting of the BC, DE, and HL register pairs.
Then each instruction in the Basic Block is given, with a preceding statement number that can be cross-
referenced with the 8080 source program. The instruction itself is listed with the hexadecimal values of its
two optional parameters.

The "opcode uses" field shows the register set used by the operation code, while the "opcode kills" field
lists the registers destroyed by the operation. The "live registers" field provides the information used by the
Translate-86 phase to minimize the generated code. This field lists the registers and flags that are
referenced following the instruction and is derived by examining the Directed Graph corresponding to the
8080 source program. Again, the information collected by the flow analyzer is optionally displayed using
the B parameter. This display is not required for normal operation of the translator.

2.3 The C (Compact) Parameter

The C (Compact) parameter causes XLT86 to generate 8086 machine code using the "Compact Memory
Model" described in the CP/M-86 System Guide. Under normal circumstances, XLT86 assumes the "8080

All Information Presented Here is Proprietary to Digital Research 4

XLT86 User's Guide 2.4 The J (Jump) Parameter

Memory Model" where code and data segments overlap. To accomplish this overlap of segments, the
program is analyzed to determine Basic Blocks that contain code and data. The program is assumed to
begin with a code segment and, if a data segment is encountered as defined by a sequence of DS, DB, or
DW statements, XLT86 produces the following statements that provide the proper transition:

L@n EQU $
DSEG
ORG Offset L@n

Similarly, the transition from a data segment back to a code sequence is marked by the generated
statements:

L@n EQU $
CSEG
ORG Offset L@n

where L@n is a sequentially generated label. The labels are generated as required by XLT86, taking the
form:

L@1 L@2 L@3 L@4 L@32767

Enabling the "C" parameter prevents the code and data segments from overlapping. In this case, the
transition from code to data and data to code is marked by either DSEG or CSEG respectively. See also the
description of the S (Segments) parameter. When enabled, the S parameter completely overrides the C
parameter.

2.4 TheJ (Jump) Parameter

The J (Jump) parameter enables the short jump analysis option of XLT86. When enabled, XLT86 translates
8080 conditional jumps to either short conditional jumps or negated short conditional jumps followed by
short unconditional jumps, depending upon the byte count to the target of the jump. That is, a "JZ X"
instruction becomes either

JZ x
X.

or

INZ L@n
JIMPS X
L@n:

The first case results if the label "x" is within the range of a short jump, while the second form results from
a target label beyond the range of a short jump. The J parameter is enabled by default, and should be
disabled using the NOJ form described below only if you want to manually edit your conditional jumps
following program translation.

2.5 The L (List) Parameter

The L (List) parameter sends the listing file directly to the system printer, thus avoiding the intermediate
PRN file. The system printer, or printer driver, must handle form-feeds (ctl-L) and tabs (ctl-1) to every
eighth column position. If your printer does not properly support these characters, you can leave the L
parameter disabled and use the CP/M PIP utility command form:

PIP LST:=Filename.PRN[T8F]

where the PIP parameter "TV expands tabs to blanks at every eighth column, and the "F" parameter deletes
the form-feed character on transmission.

All Information Presented Here is Proprietary to Digital Research 5

XLT86 User's Guide 2.6 The N (Number) Parameter

2.6 The N (Number) Parameter

The N (Number) parameter displays the current line and statement number on CRT-type console devices as
the translation proceeds. Each line and statement number is displayed with an intervening carriage return,
without a line feed, so that each successive display overwrites the previous value. In this way, you can
easily monitor the progress of XLT86 as it proceeds through the source program during the translation.

2.7 The R (Return) Parameter

The R (Return) parameter overrides the default assumptions about register usage at the end of a subroutine.
XLT86, by default, assumes that all registers are in use at the end of a subroutine in the absence of
additional information. This is a safe, but possibly restrictive, assumption that might cause more 8086 code
to be generated near the return statements of each subroutine. If you know that the entire 8080 program
being translated contains subroutines that do not return flag registers, then you should include the R
parameter in the command line to reduce the amount of generated code.

Alternatively, you can precede the return statements of various subroutines with "[R]" parameters when
they do not return flag registers, as long as balancing "[NOR]" parameters, described below, are included to
return to the default assumptions, where necessary.

2.8 The S (Segment) Parameter

The S (Segment) parameter informs XLT86 that the original source program contains embedded CSEG and
DSEG directives that delimit the code and data segments. In this case, XLT86 makes no attempt to de-rive
the code and data segment information and, instead, assumes that the CSEG and DSEG directives passed
through to the 8086 program correctly define the appropriate segments. The S parameter is automatically
set when the source program contains ASEG, CSEG, or DSEG directives, and completely overrides the
effect of the C (Compact) parameter.

2.9 The 80 Parameter

The 80 parameter causes XLT86 to produce a pseudo-assembly listing of the original 8080 source program,
giving the source line and statement number along with the assembled machine code location. If the B
parameter is simultaneously enabled, additional Basic Block information precedes each straight-line code
segment. When both 80 and B are enabled, the trace appears as shown below:

————————— Basic Block (2) 011E
Predecessors: 0119 0111 0105 0100

Successors : 0125

Reg®"s Killed: -C-E -—-—-—--—-

Reg®"s Used : -—--——-————- AOZSPI
22 22 011E pr:
23 23 O011E push psw
24 24 O0O11F mov e,a
25 25 0120 mvi c,lIst
26 26 0122 call bdos

Each Basic Block of the listing is preceded by the Basic Block Header consisting of the location (011E in
the example above) , a set of predecessor blocks where the program flow of control comes from (0119,
0111, 0105, and 0100), and a set of successor blocks where program flow could continue (0125, above).
The set of registers killed are listed, along with the set of registers used by the operation codes within the
block. No global data flow information is displayed in this trace (see the B parameter described earlier).

2.10 The NO Parameter

The two character sequence "NO" preceding the B, C, J, L, N, R, S, 80, and 86 parameters negates the
effect of the parameter once it has been set. Further, the A, P, and T parameters are ignored when they

All Information Presented Here is Proprietary to Digital Research 6

XLT86 User's Guide 2.10 The NO Parameter

occur within the source file and are effective only on the command line. The parameters B, C, J, L, N, R, S,
80, and 86 parameters, along with their negated forms, can occur in the command line or within the source
program. When they occur within the program, they apply to the segment of code following their
occurrence. Assuming that the default drive is d, where d is a valid drive code A, B, ... or P, the default
values assumed for each parameter are identical to the complete, but redundant, command line shown
below:

XLT86 d:filename [Ad NOB NOC J NOL NON Pd NOS NOR Td NO80 NO86]

All Information Presented Here is Proprietary to Digital Research 7

XLT86 User's Guide 3.1 Translated Program Format

Section 3
TRANSLATED PROGRAM FORMAT AND
CONTENT

3.1 Translated Program Format

XLT86 constructs the 8086 program from the original 8080 program by first analyzing the program register
usage. Then, using the collected information, XLT86 translates each label, operation code, and operand
expression into an equivalent 8086 program segment. In performing the translation, XLT86 uses as many
program fragments from the original 8080 source program as possible. These program fragments include
labels, expressions, and comment fields. Due to differences in assembly language formats, however, labels
and expressions might be altered somewhat to maintain their original meaning.

The translation occurs line-by-line, where each 8080 source line may contain several statements delimited
by exclamation symbols. XLT86, however, always generates a single statement per output line. The output
line includes an optional label in column one, followed by a single tab character. The translated operation
code field is placed immediately following the tab character. If the operation code has one or two operand
fields, another tab character is included and the operand fields are inserted. The operand fields themselves
are constructed by either translating 8080 registers to their 8086 equivalents, or through the construction of
an expression that is the translation of the original form. If a comment field is present in the source
program, it is copied to the 8086 program intact with sufficient leading tabs to position the comment to
column forty, if that position has not already been reached. Comments beginning in column one are
reproduced without leading tab characters. Further, comments that begin in column one with the character
"*" are started, instead, by the two character sequence ";*" to maintain compatibility with ASM-86.

For pseudo-assembly purposes, the assumed origin of the 8080 program is 0100H, corresponding to the
base of the TPA under CP/M. This assumed origin resolves label addresses during pseudo-assembly and
does not normally affect the translation process. However, if an ORG statement is encountered at the
beginning of the program before any code or data is encountered, the program origin is set to the value
given in the operand field of the ORG statement.

Program-relative operand references, along with absolute addresses, are allowed in the source program. In
this case, XLT86 generates a label of the form "L@n" at the target location. For example below, the 8080
instruction sequence shown to the left results in the 8086 program shown to the right:

NOP L@l: NOP
NOP NOP
IMP $-2 JMPS L@I

Similarly, the absolute 8080 assembly language shown to the left below results in the program shown to the
right:

ORG 300H ORG 300H
NOP L@l: NOP

NOP NOP

JMP 300H JMP L@l

In this case, the ORG statement is necessary to override the default assumption.

From this last example, it appears that XLT86 is capable of translating 8080 programs produced through
disassembly. Unfortunately, disassemblers cannot generally distinguish between code and data areas. If the
code and data sections can be separated into distinct areas, where the code is disassembled with absolute
address operands and the data areas consist of DS, DB, and DW operations, then XLT86 performs the
translation.

All Information Presented Here is Proprietary to Digital Research 9

XLT86 User's Guide 3.2 Translated Program Content

Operand fields are translated according to their context and, for notational purposes, we make the following
definitions.

Abbreviation Definition Example
ib immediate byte operand | (MVI A,ib)
iw immediate word operand | (LXI H,iw)
mb byte in memory (STA X)
mw word In memory (LHLD x)
mn near memory (CALL x)
rb byte in register (ADD B)
rw word in register (DAD B)

Table 3-1. Operand Field Abbreviations

The translation of an expression is denoted by a prime following the expression type. Thus, ib is translated
to ib', iw to iw', and so forth. Register translation takes place according to the following table.

8080 Register (rb) | 8086 Register (rb")

AL

CH

CL

DH

DL

BH

|T(moloO w >

BL

Table 3-2. Register Translation

The M (Memory) register has no direct equivalent in the 8086 environment, so XLT86 produces an
"equate" statement in the following form at the beginning of each program.

M EQU Byte Ptr O[BX]
Thus, the M register remains unchanged in the translation with the assumption that the BX register contains
the offset to the proper memory location.

The 16-bit register pair translation occurs as shown in Table 3-3, below.

8080 Register (rw) |1 8086 Register (rw")
PSW AX
B CX
D DX
H BX
SP SP

Table 3-3. 16-Bit Register Translation

The 8080 PSW and 8086 AX register have a loose correspondence depending upon register usage at the
time of translation. The exact correspondence is defined below under the PUSH and POP operators.

3.2 Translated Program Content

Expressions are normally composed of literal constants, data variable references, program label references,
and register references. XLT86 computes the type of each expression as the translation proceeds, resulting
in one of the following expressions.

Expression | Meaning

constant consists only of literal constants

variable consists of zero or more constants and one or more
variable references

All Information Presented Here is Proprietary to Digital Research 10

XLT86 User's Guide 3.2 Translated Program Content

Expression | Meaning

label consists of zero or more constants or variables, and one
or more labels
register consists of zero or more constants, variables, or labels

and one or more register references

Table 3-4. Expressions

The translation of ib, iw, mb, mw, and mn is described in Table 3-5, below. This translation takes place
after XL T86 scans the expression to determine its type, as described above.

Operand Field | Translation

ib and iw ib" and iw" are constructed from the original ib and iw
by first determining the expression type. If the type
is "constant," the expression ib or Iw remains
unchanged in the translation. Otherwise, for each
variable, label, dollar sign ($) , or register
reference in the expression, XLT86 changes the
reference, denoted by x, to " (offset x) " so that the
resulting expression ib" or iw" represents a CS or DS
relative offset computation.

mb The resulting expression mb® is constructed from the
original expression mb according to the type of mb. If
mb s '‘constant' then mb" becomes "Byte Ptr mb"
denoting a single byte operand located at a literal
constant address relative to DS or CS. Otherwise, the
expression mb" becomes "Byte Ptr mb" denoting a byte
variable or label address.

mw Similar to mb, mwl becomes "Byte Ptr .mw" if mw is
"constant"” and "Byte Ptr mw" otherwise.
mn The expression mn" is the same as the original mn

unless there is no literal label at the target address.
In this latter case, a label of the form "L@n" is
created at the target address, which becomes the value
of mn

Table 3-5. Operand Field Translation

Due to differences in 8080 and 8086 program formulation requirements, not all valid 8080 expressions can
be successfully converted to valid 8086 expressions. Thus, you must be aware that additional editing is
required if your translated program produces errors during assembly with ASM-86. In particular,
expressions that use arbitrary operations upon constants, variables, labels, and registers are unlikely to
assemble correctly under ASM-86, or any other assembler that uses the Intel conventions.

In the translation table given below, the 8080 operation code is shown to the left, with the translated 8086
code sequence shown to the right. In many cases, the registers that are live at the point where the 8080
operation code occurs determine the exact sequence of code that is generated. In these cases, the alternative
forms are given separately. Conditional assembly notation specifies the alternative forms, with the
introduction of the following two pseudo-functions:

live(rl,r2, .., rn)

and

short(mn*)
The "live" function takes a variable number of register arguments and results in a TRUE value if one or
more of these registers is live at the point of translation. Otherwise, the "live" function results in a FALSE

value. In the Section 2 example for the B parameter, statement 24 (MOV E,A) has the live register set
given by the vector:

All Information Presented Here is Proprietary to Digital Research 11

XLT86 User's Guide 3.2 Translated Program Content

so that
live(B,C,D) = TRUE and live(A,0) = FALSE

The "short" function is used in the translation of conditional jump instructions where the value of
short(mn') is TRUE if the target of the translated jump address mn' is within the range of a conditional
jump, or if the "J" parameter is enabled. otherwise, short(mn") results in a FALSE value. XLT86 also uses
the notation in Section 2 for label generation. The form "L@n" represents labels produced sequentially,
starting at n = 1, used in the translation of conditional calls, returns, and conditional jumps outside the
range of an 8086 conditional transfer. The CC (Call if Carry) operator, for example, translates to a jump
conditional to a generated label followed by a direct call. The generated label is then inserted, as shown in
the expansion of the 8080 instruction CC SUBR:

JNB L@1
CALL SUBR
La@l:

Table 3-6 gives the translation of each operation code. Note in particular that the following BDOS entry
operations:

CALL O CALL 5 imp 0 JMP 5

are treated as special cases that are translated to Interrupt 224, reserved by Intel Corporation for entry to
CP/M-86 and MP/M-86.

Operation Code | Translation
ACI ib ADC AL, ibl
ADC rb ADC AL,rb"
ADD rb ADD AL,rb"
ADI ib ADD AL, ib
ANA rb AND AL,rb"
ANI rb AND AL,rb"
CALL O MOV CL,O
MOV DL,O
INT 224
CALL 5 INT 224
CALL mn CALL mn*®
CC mn JNB L@n
CALL mn*
L@n:
CM mn JNS L@n
CALL mn*®
L@n:
CMA NOT AL
CMC CMC
CMP rb CMP AL,rb"
CNC mn JINAE L@n
CALL mn*
L@n:
CNZ mn JZ L@n
CALL mn*
L@n:

All Information Presented Here is Proprietary to Digital Research 12

XLT86 User's Guide 3.2

Operation Code | Translation
CP mn JS L@n
CALL mn*
L@n:
CPE mn JNP L@n
CALL mn*
L@n:
CPI 1ib CMP AL, ib
CPO mn JP L@n
CALL mn*®
L@n:
CZ mn INZ L@n
CALL mn*®
L@n:
DAA DAA
DAD rw IF rw = H
SHL BX,1
ELSE
IF live(0) AND NOT live(Z,S,P,1)
ADD BX,rwil
ELSE
IF NOT live(O) AND live(Z,S,P,1)
LAHF
ADD BX,rw"
SAHF
ELSE
LAHF
ADD BX,rw"
RCR SI,1
SAHF
RCL SI,1
ENDIF
ENDIF
ENDIF
DEC rb DEC rbil
DCX rw DEC rwl
DI CcLI
El STI
HLT HLT
IN ib IN AL, ibl
INR rb INC rb*
INX rw IF NOT live(Z,S,P,1)
INC rw*
ELSE
LAHF
INC rw*
SAHF
ENDIF
JC mn IF short(mn®)
JB mn*
ELSE
JNB L@n
JMPS mn*
L@n:
ENDIF

All Information Presented Here is Proprietary to Digital Research

Translated Program Content

13

XLT86 User's Guide

3.2 Translated Program Content

Operation Code

Translation

JM mn

IF short(mn®)
JS mn*
ELSE
JNS L@n
JMPS mn*
L@n:
ENDIF

imp O

MOV CL,O
MOV DL,O
INT 224
RET

imp 5

INT 224
RET

JMP mn

JMPS mn*

JNC mn

IF short(mn®)
JNB mn*
ELSE
JINAE L@n
JMPS mn*
L@n:
ENDIF

JNZ mn

IF short(mn®)
INZ mn*
ELSE
JZ L@n
JMPS mn*
L@n:
ENDIF

JP mn

IF short(mn®)
JINS mn*
ELSE
JS L@n
JMPS mn*
L@n:
ENDIF

JPE mn

IF short(mn®)
JPE mn*
ELSE
JNP L@n
JMPS mn*
L@n:
ENDIF

JPO mn

IF short(mn®)
JPO mn*
ELSE
JP L@n
JMPS mn*
L@n:
ENDIF

All Information Presented Here is Proprietary to Digital Research

14

XLT86 User's Guide 3.2 Translated Program Content
Operation Code | Translation
JZ mn IF short(mn®)
JZ mn*
ELSE
JNZ L@n
JMPS mn*
L@n:
ENDIF
LDA mb MOV AL,mb*"
LDAX rw MOV SI,rwl
MOV AL, [SI]
LHLD mw MOV BX,mw"
LXT rw,iw MOV rwl, iwl
MOV rbl,rb2 MOV rbl*,rb2l
MVI rb,ib MOV rb*,ib"
NOP NOP
ORA rb OR AL,rb"
ORI 1ib OR AL,rb"
ouT i OUT i1b",AL
PCHL JMP BX
POP rw POP rwl
IF rw = PSW AND live(OIZIS"PIli)
XCHG AL,AH
SAHF
ELSE
IF rw = PSW AND live(A)
XCHG AL,AH
ENDIF
ENDIF
PUSH rw IF rw = PSW AND live(A)
LAHF
XCHG AL,AH
PUSH AX
XCHG AL,AH
ELSE
if rw = PSW
LAHF
XCHG AL,AH
PUSH AX
ELSE
PUSH rwl
ENDIF
ENDIF
RAL RCL AL,
RAR RCR AL,
RC JNB L@n
RET
L@n:
RET RET
RLC ROL AL,
RM JNS L@n
RET
L@n:

All Information Presented Here is Proprietary to Digital Research

15

XLT86 User's Guide

3.2

Translated Program Content

Operation Code | Translation
RNC JINAE L@n
RET
L@n:
RNZ JZ L@n
RET
L@n:
RP JS L@n
RET
L@n:
RPE JNP L@n
RET
L@n:
RPO JP L@n
RET
L@n:
RRC ROR AL,
RST ib INT ibl
RZ JINZ L@n
RET
L@n:
SBB rb SBB AL,rb"
SBI ib SBB AL, ibl
SHLD mw MOV mw*® ,BX
SPHL MOV SP,BX
STA mb MOV mb*,AL
STAX rw MOV DI, rwl
MOV [DI1,AL
STC STC
SUB rb SUB AL,rb"
SUl i1b SUB AL, ibl
XCHG XCHG BX,DX
XRA rb XOR AL,rb"
XRI ib XOR AL, ib
XTHL MOV BP,SP

XCHG BX, [BPI

Table 3-6. Translation Table

All Information Presented Here is Proprietary to Digital Research 16

XLT86 User's Guide 4.1 Pseudo-assembly Process Error Messages

Section 4
XLT86 ERROR MESSAGES

4.1 Pseudo-assembly Process Error Messages

XLT86 issues error messages that fall into two categories: those produced by the pseudo-assembly process,
and those produced during translation. Errors in the first category are not considered fatal, but are simply
annotated in the source listing file following the line in which the error occurs. If errors are present, the
message:

Number of Errors: n

is displayed at the console following the pseudo-assembly. Examine the PRN file to determine if the errors
are significant. Error messages take the form:

** Error: e **, Near t

where e is one of the error codes, and t is a program element near the position where the error occurred.
Table 4-1 lists the error codes.

Error Code | Meaning

Bad Flag invalid parameter list [pl pn]

Balance Unmatched right parenthesis or missing trailing string
quote.

Boundary Invalid program boundary, usually results from a branch to
the middle of an instruction.

Convert Cannot convert an operand to internal form.

End-Line The end of a program line contains extraneous characters.

Exp Ovfl Expression stack overflow; the expression is nested too
deeply.

Gtr 7 An expression produced a value greater than 7, where a
value from 0-7 is required.

Gtr 255 An expression produced a value greater than 255, where a
value from 0-255 is required.

Mov M,M? The source line contains the invalid instruction MOV M,M.

No Comma Missing comma where comma is required.

No Value A label or variable was encountered that does not have an
assigned value.

Not Impl The instruction or directive is not implemented in XLT86.

Phase A label or variable has a different value on two passes
through the source program.

Str Len A string was encountered that exceeds the capacity of
XLT86, check for missing right quote mark.

Value The value produced by an expression is not compatible with
the context in which it occurs.

Table 4-1. XLT86 Error Codes

4.2 Translate-86 Error Messages

The Translate-86 phase also produces a limited number of error messages. All errors produced by this
phase are fatal, and cause immediate termination of XLT86. Table 4-2 lists these error messages.

All Information Presented Here is Proprietary to Digital Research 17

XLT86 User's Guide 4.3 Memory overflow

Error Message | Meaning

Bad Oper Invalid 8080 operation code was encountered during
translation; probably due to bad disk 1/0 operation.
Check for hardware controller faults.

Not BDOS A CALL or JMP occurred below the base origin of the
program where the target iIs not OOOOH (warm boot)
orO005H (BDOS entry).

Phase (B) The Directed Graph does not correspond to the source
program at the Basic Block level; usually due to a
hardware malfunction.

Phase (S) The Directed Graph does not correspond to the source
program at the statement level; usually due to a
hardware malfunction

Table 4-2. Translate-86 Error Messages
An error produced by Translate-86 is accompanied by the console error message:
Fatal Error (See PRN file)

to indicate that such an error occurred.

4.3 Memory overflow

The XLT86 program occupies approximately 30K bytes of main memory. The remainder of memory, up to
the base of CP/M, stores the program graph that represents the 8086 program being translated. The error
message:

ERROR (7) "Free Space Exhausted"
is issued if the program graph exceeds available memory. A 64K CP/M system allows translation of 8080
programs of up to approximately 6K

The above error causes XLT86 to terminate. To continue, you must divide your source program into
smaller modules and retry the translation.

All Information Presented Here is Proprietary to Digital Research 18

XLT86 User's Guide Appendix A

Appendix A
SAMPLE PROGRAM TRANSLATIONS

The DUMP.ASM program presented here and normally included as a sample assembly language program
with CP/M illustrates the translation process. The XLT86 command line:

XLT86 DUMP [80 86]

produces the first example shown below. The "80" parameter selects the 8080 program listing option, while
the "86" parameter selects the 8086 listing option. XLT86 places full lines of dashes (" ---- 11) between the
Basic Blocks in the 8080 listing. This translation of the DUMP program, however, requires modification to
run under CP/M 86. In particular, the DUMP.ASM program contains initialization code that saves the entry
SP (statements 34 to 37) and resets the SP to a local stack (statement 39). The return statement following
the FINIS label (statement 95) returns control to the CCP.

To perform an exactly equivalent sequence of operations, you must also save the stack segment register
(SS) upon entry to the DUMP program, and restore this value before executing the return. Further, the
simple RET operation must be replaced by a Far Return (RETF) to balance the original Far Call from the
CCP. A simpler solution is to eliminate the initialization code (statements 33 through 39) and use the CCP's
built-in 96 byte stack. Control returns to the CCP by executing a RETF at statement 95. If you want to use a
local stack, set the SS register to the value of DS upon entry, and set SP to the Offset of STKTOP. Control
returns to the CCP through execution of function call #0 in place of the RET in statement 95, as follows:

MOV CL,O
MOV DL,O
INT 224

The second listing shows the Basic Block information collected by the flow analyzer, and produced by the
command line:

XLT86 DUMP [B]

where the "B" parameter selects the Basic Block trace. Under normal circumstances, either of the
commands shown below are sufficient and reduce the amount of trace information:

XLT86 DUMP [N]
or

XLT86 DUMP

The first command is used only with a CRT-type device where the carriage-return character does not cause
an automatic line-feed (see the description of the "N" parameter).

All Information Presented Here is Proprietary to Digital Research 19

XLT86 User's Guide

Appendix A

o
=
o
o

0100 BDOS
10 0100 CONS
11 0100 TYPEF

12 0100 PRINTF

13 0100 BRKF
14 0100 OPENF
15 0100 READF

17 0100 FCB
18 0100 BUFF

19 0100 ;
20 0100 ;
21 0100 CR
22 0100 LF
23 0100 ;
24 0100

25 0100 FCBDN
26 0100 FCBFN
27 0100 FCBFT
28 0100 FCBRL
29 0100 FCBRC
30 0100 FCBCR
31 0100 FCBLN
32 0100 ;

FILE

COPY
DIGI
BOX

CALI

ORG
EQU
EQU
EQU

EQU
EQU
EQU

EQU
EQU

NON
EQU
EQU

FILE
EQU
EQU
EQU
EQU
EQU
EQU
EQU

SET
LX1
DAD
ENTR
SHLD
SET
LX1
READ
CALL

DUMP PROGRAM, READS AN INPUT FILE AND PRINTS IN HEX

RIGHT (C) 1975, 1976, 1977, 1978
TAL RESEARCH

579, PACIFIC GROVE

FORNIA, 93950

100H

0005H ;DOS ENTRY POINT

1 ;READ CONSOLE

2 ;TYPE FUNCTION

EQU 9 ;BUFFER PRINT ENTRY

11 ;BREAK KEY FUNCTION (TRUE IF CHAR READY)

15 ;FILE OPEN

20 ;READ FUNCTION

5CH ;FILE CONTROL BLOCK ADDRESS

80H ;INPUT DISK BUFFER ADDRESS
GRAPHIC CHARACTERS

ODH ;CARRIAGE RETURN

OAH ;LINE FEED

CONTROL BLOCK DEFINITIONS
FCB+0 ;DISK NAME
FCB+1 ;FILE NAME
FCB+9 ;DISK FILE TYPE (3 CHARACTERS)
FCB+12 ;FILE®S CURRENT REEL NUMBER
FCB+15 ;FILE®"S RECORD COUNT (O TO 128)
FCB+32 ;CURRENT (NEXT) RECORD NUMBER (0O TO 127)
FCB+33 ;FCB LENGTH

UP STACK
H,0
SP
Y STACK POINTER IN HL FROM THE CCP
OLDSP
SP TO LOCAL STACK AREA (RESTORED AT FINIS)
SP,STKTOP
AND PRINT SUCCESSIVE BUFFERS
SETUP ;SET UP INPUT FILE

CPI
INZ

255 ;255 IF FILE NOT PRESENT
OPENOK ;SKIP IF OPEN IS OK

FILE
LX1
CALL

NOT THERE, GIVE ERROR MESSAGE AND RETURN
D, OPNMSG
ERR

50 011B OPENOK:

MVI
STA
HL C
LX1

;OPEN OPERATION OK, SET BUFFER INDEX TO END

A,80H

1BP ;SET BUFFER POINTER TO 80H
ONTAINS NEXT ADDRESS TO PRINT

H,0 ;START WITH 0000

H ;SAVE LINE POSITION

GNB

H ;RECALL LINE POSITION

FINIS ;CARRY SET BY GNB IF END FILE

MoV
PRIN
CHEC

B,A
T HEX VALUES
K FOR LINE FOLD

All Information Presented Here is Proprietary to Digital Research

20

XLT86 User's Guide Appendix A

64 64 012C MoV A,L

65 65 012D ANI OFH ;CHECK LOW 4 BITS

66 66 012F INZ NONUM

67 67 0132 ; PRINT LINE NUMBER

68 68 0132 CALL CRLF

69 69 0135 ;

70 70 0135 ; CHECK FOR BREAK KEY

71 71 0135 CALL BREAK

72 72 0138 ; ACCUM LSB = 1 IF CHARACTER READY

73 73 0138 RRC ;INTO CARRY

74 74 0139 JC FINIS ;DON"T PRINT ANY MORE
75 75 013C ;

76 76 013C MoV ALH

77 77 013D CALL PHEX

78 78 0140 MoV A,L

79 79 0141 CALL PHEX

80 80 0144 NONUM

81 81 0144 INX H ;TO NEXT LINE NUMBER
82 82 0145 MVI At T

83 83 0147 CALL PCHAR

84 84 014A MoV A,B

85 85 014B CALL PHEX

86 86 014E JMP GLOOP

87 87 0151 ;

88 88 0151 FINIS:

89 89 0151 ; END OF DUMP, RETURN TO CCP

90 90 0151 ; (NOTE THAT A JMP TO OOOOH REBOOTS)
91 91 0151 CALL CRLF

92 92 0154 LHLD OLDSP

93 93 0157 SPHL

94 94 0158 ; STACK POINTER CONTAINS CCP"S STACK LOCATION
95 95 0158 RET ;TO THE CCP

96 96 0159 ;

97 97 0159 ;

98 98 0159 ; SUBROUTINES

99 99 0159 ;

100 100 0159 BREAK: ;CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)
101 101 0159 PUSH H! PUSH D! PUSH B; ENVIRONMENT SAVED
102 104 015C MVI C,BRKF

103 105 015E CALL BDOS

104 106 0161 POP B! POP D! POP H; ENVIRONMENT RESTORED
105 109 0164 RET

106 110 0165 ;

107 111 0165 PCHAR: ;PRINT A CHARACTER

108 112 0165 PUSH H! PUSH D! PUSH B; SAVED

109 115 0168 MV1 C,TYPEF

110 116 016A MoV E,A

111 117 016B CALL BDOS

112 118 016E POP B! POP D! POP H; RESTORED

113 121 0171 RET

114 122 0172 ;

115 123 0172 CRLF

116 124 0172 MVI A,CR

117 125 0174 CALL PCHAR

118 126 0177 MVI A,LF

All Information Presented Here is Proprietary to Digital Research 21

XLT86 User's Guide

Appendix A

CALL PCHAR

;PRINT NIBBLE IN REG A

ANI OFH ;LOW 4 BITS
CPI 10

JINC P10

LESS THAN OR EQUAL TO 9
ADI "0-

JMP PRN

GREATER OR EQUAL TO 10
ADI "A" - 10

;PRINT HEX CHAR IN REG A
PUSH PSW

RRC

RRC

RRC

RRC

CALL PNIB ;PRINT NIBBLE

POP PSW
CALL PNIB

;PRINT ERROR MESSAGE
D,E ADDRESSES MESSAGE ENDING WITH *'$"

MvI C,PRINTF ;PRINT BUFFER FUNCTION
CALL BDOS
RET

;GET NEXT BYTE

LDA 1BP
CPI 80H
INZ GO

READ ANOTHER BUFFER

CALL DISKR

ORA A ;ZERO VALUE IF READ OK

Jz GO ;FOR ANOTHER BYTE

END OF DATA, RETURN WITH CARRY SET FOR EOF
STC

RET

181

;READ THE BYTE AT BUFF+REG A

MoV E,A ;LS BYTE OF BUFFER INDEX

MVI D,0 ;DOUBLE PRECISION INDEX TO DE
INR A ; INDEX=INDEX+1

STA 1BP ;BACK TO MEMORY

POINTER IS INCREMENTED

All Information Presented Here is Proprietary to Digital Research 22

XLT86 User's Guide

Appendix A

SAVE THE CURRENT FILE ADDRESS

LX1 H,BUFF

DAD D

ABSOLUTE CHARACTER ADDRESS 1S IN HL
MoV AM

BYTE 1S IN THE ACCUMULATOR

ORA A ;RESET CARRY BIT

RET

: ;SET UP FILE

OPEN THE FILE FOR INPUT

XRA A ;ZERO TO ACCUM

STA FCBCR ;CLEAR CURRENT RECORD
LX1 D,FCB

MVI C,OPENF

CALL BDOS

255 IN ACCUM IF OPEN ERROR

;READ DISK FILE RECORD
PUSH H! PUSH D! PUSH B

LX1 D,FCB
MVI C,READF
CALL BDOS

POP B! POP D! POP H
RET

FIXED MESSAGE AREA

SIGNON: DB “EILE DUMP VERSION 1.4$"
OPNMSG DB CR,LF
: VARIABLE AREA
IBP: DS 2 - INPUT BUEFER POINTER
OLDSP DS 2 “ENTRY STACK POINTER VALUE
STACK AREA
DS 64 -RESERVE 32 LEVEL STACK
STKTOP:
’ END

All Information Presented Here is Proprietary to Digital Research 23

XLT86 User's Guide

O©CO~NOU_AWNERE

OCo~NoOOUAWNREFO

Appendix A
M EQU Byte Ptr O[BX]
; FILE DUMP PROGRAM, READS AN INPUT FILE AND PRINTS IN HEX
; COPYRIGHT (C) 1975, 1976, 1977, 1978
; DIGITAL RESEARCH
; BOX 579, PACIFIC GROVE
; CALIFORNIA, 93950
ORG 100H
BDOS EQU 0005H ;DOS ENTRY POINT
CONS EQU 1 ;READ CONSOLE
TYPEF EQU 2 ;TYPE FUNCTION
PRINTF EQU 9 ;BUFFER PRINT ENTRY
BRKF EQU 11 ;BREAK KEY FUNCTION (TRUE IF CHAR READY)
OPENF EQU 15 ;FILE OPEN
READF EQU 20 ;READ FUNCTION
FCB EQU 5CH ;FILE CONTROL BLOCK ADDRESS
BUFF EQU 80H ; INPUT DISK BUFFER ADDRESS
; NON GRAPHIC CHARACTERS
CR EQU ODH ;CARRIAGE RETURN
LF EQU OAH ;LINE FEED
; FILE CONTROL BLOCK DEFINITIONS
FCBDN EQU FCB+0 ;DISK NAME
FCBFN EQU FCB+1 ;FILE NAME
FCBFT EQU FCB+9 ;DISK FILE TYPE (3 CHARACTERS)
FCBRL EQU FCB+12 ;FILE™S CURRENT REEL NUMBER
FCBRC EQU FCB+15 ;FILE™S RECORD COUNT (O TO 128)
FCBCR EQU FCB+32 ;CURRENT (NEXT) RECORD NUMBER (0 TO 127)
FCBLN EQU FCB+33 ;FCB LENGTH
SET UP STACK
MOV BX,0
ADD BX,SP
ENTRY STACK POINTER IN HL FROM THE CCP
MOV Word Ptr OLDSP,BX
; SET SP TO LOCAL STACK AREA (RESTORED AT FINIS)
MOV SP, (Offset STKTOP)
READ AND PRINT SUCCESSIVE BUFFERS
CALL SETUP ;SET UP INPUT FILE
CMP AL, 255 ;255 IF FILE NOT PRESENT
INZ OPENOK ;SKIP IF OPEN 1S OK
; FILE NOT THERE, GIVE ERROR MESSAGE AND RETURN
MOV DX, (Offset OPNMSG)
CALL ERR
JMPS FINIS ;TO RETURN
OPENOK : ;OPEN OPERATION OK, SET BUFFER INDEX TO END
MOV AL, 80H
MOV Byte Ptr IBP,AL ;SET BUFFER POINTER TO 80H
; HL CONTAINS NEXT ADDRESS TO PRINT
MOV BX,0 ;START WITH 0000
GLOOP:
PUSH BX ;SAVE LINE POSITION
CALL GNB
POP BX ;RECALL LINE POSITION
JB FINIS ;CARRY SET BY GNB IF END FILE

MoV CH,AL

PRINT HEX VALUES

CHECK FOR LINE FOLD

MoV AL,BL

AND AL,OFH ;CHECK LOW 4 BITS
INZ NONUM

PRINT LINE NUMBER

CALL CRLF

All Information Presented Here is Proprietary to Digital Research 24

XLT86 User's Guide Appendix A

70 70 ; CHECK FOR BREAK KEY

71 71 CALL BREAK

72 72 ACCUM LSB = 1 IF CHARACTER READY

73 73 ROR AL,1 ;INTO CARRY

74 74 JB FINIS ;DON"T PRINT ANY MORE
75 75 ;

76 76 MOV AL ,BH

77 77 CALL PHEX

78 78 MOV AL ,BL

79 79 CALL PHEX

80 80 NONUM:

81 81 LAHF ;TO NEXT LINE NUMBER
81 81 INC BX

81 81 SAHF

82 82 MOV AL," T

83 83 CALL PCHAR

84 84 MOV AL ,CH

85 85 CALL PHEX

86 86 JIMPS GLOOP

87 87 ;

88 88 FINIS:

89 89 ; END OF DUMP, RETURN TO CCP

90 90 ; (NOTE THAT A JMP TO OOOOH REBOOTS)

91 91 CALL CRLF

92 92 MOV BX,Word Ptr OLDSP

93 93 MOV SP,BX

94 94 ; STACK POINTER CONTAINS CCP"S STACK LOCATION

95 95 RET ;TO THE CCP

96 96 ;

97 97

98 98 ; SUBROUTINES

99 99 ;

100 100 BREAK: ;CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)
101 101 PUSH BX

101 102 PUSH DX

101 103 PUSH CX ; ENVIRONMENT SAVED
102 104 MoV CL,BRKF

103 105 INT 224

104 106 POP CX

104 107 POP DX

104 108 POP BX ; ENVIRONMENT RESTORED
105 109 RET

106 110 ;

107 111 PCHAR: ;PRINT A CHARACTER
108 112 PUSH BX

108 113 PUSH DX

108 114 PUSH CX ; SAVED

109 115 MOV CL,TYPEF

110 116 MOV DL,AL

111 117 INT 224

112 118 POP CX

112 119 POP DX

112 120 POP BX ; RESTORED

113 121 RET

114 122 ;

115 123 CRLF:

116 124 MOV AL,CR

117 125 CALL PCHAR

118 126 MOV AL,LF

119 127 CALL PCHAR

120 128 RET

121 129 ;

122 130 ;

123 131 PNIB: ;PRINT NIBBLE IN REG A
124 132 AND AL ,OFH ;LOW 4 BITS

125 133 CMP AL, 10

126 134 JNB P10

127 135 ; LESS THAN OR EQUAL TO 9

128 136 ADD AL,"0"

129 137 IMPS PRN

All Information Presented Here is Proprietary to Digital Research 25

XLT86 User's Guide

131
132
133
134
135
136
137
137
137
137
138
139
140
141
142
143
143
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
195

139
140
141
142
143
144
145
145
145
145
146
147
148
149
150
151
151
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

Appendix A
; GREATER OR EQUAL TO 10
P10: ADD AL,"A" - 10
PRN: CALL PCHAR
RET
PHEX: ;PRINT HEX CHAR IN REG A
LAHF
XCHG AL,AH
PUSH AX
XCHG AL,AH
ROR AL,1
ROR AL,1
ROR AL,1
ROR AL,1
CALL PNIB ;PRINT NIBBLE
POP AX
XCHG AL,AH
SAHF
CALL PNIB
RET
ERR: ;PRINT ERROR MESSAGE
; D,E ADDRESSES MESSAGE ENDING WITH "'$"
MOV CL,PRINTF ;PRINT BUFFER FUNCTION
INT 224
RET
GNB: ;GET NEXT BYTE
MOV AL,Byte Ptr IBP
CMP AL, 80H
INZ GO
; READ ANOTHER BUFFER
CALL DISKR
OR AL, AL ;ZERO VALUE IF READ OK
Jz GO ;FOR ANOTHER BYTE
END OF DATA, RETURN WITH CARRY SET FOR EOF
STC
RET
GO: ;READ THE BYTE AT BUFF+REG A
MOV DL,AL ;LS BYTE OF BUFFER INDEX
MOV DH,0 ;DOUBLE PRECISION INDEX TO DE
INC AL ; INDEX=INDEX+1
MOV Byte Ptr IBP,AL ;BACK TO MEMORY
POINTER IS INCREMENTED
SAVE THE CURRENT FILE ADDRESS
MOV BX,BUFF
ADD BX,DX
; ABSOLUTE CHARACTER ADDRESS IN HL
MOV AL, M
; BYTE 1S IN THE ACCUMULATOR
OR AL, AL ;RESET CARRY BIT
RET
SETUP: ;SET UP FILE
; OPEN THE FILE FOR INPUT
XOR AL, AL ;ZERO TO ACCUM
MOV Byte Ptr .FCBCR,AL ;CLEAR CURRENT RECORD
MOV DX ,FCB
MOV CL,OPENF
INT 224
; 255 IN ACCUM IF OPEN ERROR
RET
DISKR: ;READ DISK FILE RECORD
PUSH BX
PUSH DX

All Information Presented Here is Proprietary to Digital Research 26

XLT86 User's Guide

195
196
197
198
199
199
199
200
200
200
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

205
206
207
208
209
210
211
212
212
212
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

2 ; INPUT BUFFER POINTER
2 ;ENTRY STACK POINTER VALUE

64 ;RESERVE 32 LEVEL STACK

PUSH CX
MoV DX,FCB
MoV CL,READF
INT 224
POP CX
POP DX
POP BX
RET
L 1 EQU $
DSEG
ORG Offset L_1
; FIXED MESSAGE AREA
SIGNON DB "FILE DUMP VERSION 1.4$"
OPNMSG DB CR,LF
; VARIABLE AREA
1BP RS
OLDSP RS
; STACK AREA
RS
STKTOP:
END

All Information Presented Here is Proprietary to Digital Research

Appendix A

27

XLT86 User's Guide Appendix A

LIST OF BASIC BLOCKS

Block At 0005 (subr), A86 = 7A74
Entry Active: --———————————- Exit Active: -———————————-—

Block At 0100 (code), A86 = 0100

Entry Active: BCDE---A----- Exit Active: BCDEHL-A-----
stmt#] opcode uses	op	vl	v2	opcode kills	[live regs
4	-—-——————————- JLX1	H]0000	----HL-——----	BCDEHL-A-----	
35]----HL---———- IDAD	SP		----HL--0----	BCDEHL-A-----	
37	----HL--————-	SHLD]O1F7]	-~	BCDEHL-A----~-	
9	[LXT	M]0239]---—————————-	BCDEHL-A-----		
41]-———————————-	CALL]O1C1]	-———————————-	BCDEHL-A-——--		

Block At 010D (code), A86 = 0115
Entry Active: BCDEHL-A----- Exit Active: BCDEHL-AOZSPI

|stmt#] opcode uses | op | v1 | v2 | opcode kills | 1live regs |

| 42]---———- — ICPI | FF| [— 0ZSP1 |BCDEHL-AOZSPI |
<] [— Z--- |JINZ |011B] [|BCDEHL-AOZSPI |

Block At 0112 (code), A86 = 011C
Entry Active: BC--HL-AOZSPI Exit Active: BCDEHL-AOZSPI

|stmt#] opcode uses | op | vl | v2 | opcode kills | live regs |

| 46]-———————————- ILXI | DJO1F3]|--DE--——————- |BCDEHL-AOZSPI |
4 P — |CALL]O19C| |-———————————- |BCDEHL-AOZSPI |

Block At 0118 (code), A86 = 0122
Entry Active: BCDEHL-AOZSPI Exit Active: BCDEHL-AOZSPI

|stmt#] opcode uses | op | v1 | v2 | opcode kills | 1live regs |

Block At 011B (code), A86 = 0125
Entry Active: BCDE----0ZSPI Exit Active: BCDEHL-AOZSPI

= | [——— IMVI | Al 80]----—-—-- N— |BCDE---AOZSPI |
| 52]----——- — ISTA |O1F5] [|BCDE---AOZSPI |
=YY [——— ILXI | H]0000|----HL---——-- |BCDEHL-AOZSPI |

All Information Presented Here is Proprietary to Digital Research 28

XLT86 User's Guide Appendix A

Block At 0123 (code), A86 = 012D
Entry Active: BCDEHL-AOZSPI1 Exit Active: BCDEHL-AOZSPI

All Information Presented Here is Proprietary to Digital Research 29

XLT86 User's Guide Appendix A

|stmt#]| opcode uses | op | v1 | v2 | opcode kills | live regs |

| 57]----HL-—————- IPUSH] H] [| BCDEHL-AOZSPI |
] [—— ICALL|01A2] [| BCDEHL-AOZSPI |

Block At 0127 (code), A86 = 0136
Entry Active: BCDE---AOZSPl Exit Active: BCDEHL-AOZSPI

| 59]-————mmmm - IPOP | H| |--——HL-—————- | BCDEHL-AOZSPI |
| 60]-——————- 0---- |JC]0151] [| BCDEHL-AOZSPI |

Block At 012B (code), A86 = 0141

Entry Active: -CDEHL-A----- Exit Active: BCDEHL-AOQOZSPI
stmt#] opcode uses	op	vl	v2	opcode kills	[live regs
61]	------- A-———- MOV	Bl AlB---————————-	BCDEHL-—----~-		
64	----- L-—————- MOV	Al Lj----——- A-———-	BCDEHL-A----~-		
65]--————-- A-———-	[ANI	OF]	-————-- AOZSP1	BCDEHL-AOZSPI	
66]--——————- Z-—-	JINZ	0144]	-———————————-	BCDEHL-AOZSPI	

Block At 0132 (code), A86 = 014C
Entry Active: BCDEHL-AOZSP1 Exit Active: BCDEHL-AOZSPI

Block At 0135 (code), A86 = 014F
Entry Active: BCDEHL-AOZSPI Exit Active: BCDEHL-AOZSPI

Block At 0138 (code), A86 = 0152
Entry Active: BCDEHL-A-ZSPI Exit Active: BCDEHL-AOZSPI

|stmt#] opcode uses | op | vl | v2 | opcode kills | [live regs |

| 73]-----—- — IRRC | I [—— AO---- |BCDEHL-AOZSPI |
| 74]-—————-- 0---- |JC |0151} [|BCDEHL-AOZSPI |

Block At 013C (code), A86 = 015A
Entry Active: BCDEHL--0ZSPI Exit Active: BCDEHL-AOZSPI

| 76]-——-H-——————- IMOV | Al H]-—-—-——- A-———- IBCDEHL-AOZSPI |

All Information Presented Here is Proprietary to Digital Research 30

XLT86 User's Guide Appendix A

All Information Presented Here is Proprietary to Digital Research 31

XLT86 User's Guide Appendix A

Block At 0140 (code), A86 = 015F
Entry Active: BCDEHL--0ZSP1 Exit Active: BCDEHL-AOZSPI

| 78]-——-- [IMOV | Al L]----——- N I|BCDEHL-AOZSPI |
[) [— ICALL]O18F| [I|BCDEHL-AOZSPI |

Block At 0144 (code), A86 = 0164
Entry Active: BCDEHL--OZSP1 Exit Active: BCDEHL-AOZSPI

| 81]-——-HL-—————- [INX | H] |--—-HL-—————- I|BCDEHL--0ZSPI |
7] [—— IMVI | Al 20]-----——- N I|BCDEHL-AOZSPI |
| 83|-———mmmm—- ICALL]0165] [I|BCDEHL-AOZSPI |

Block At 014A (code), A86 = 016C
Entry Active: BCDEHL--0ZSP1 Exit Active: BCDEHL-AOZSPI

stmt#] opcode uses	op	vl	v2	opcode kills	[live regs
84	B------—————- MOV	Al B]----—-- A-———-	BCDEHL-AOZSP1		
85	-—-——————————-	CALL]018F]		---——------——-	BCDEHL-AOZSPI1

Block At 014E (code), A86 = 0171
Entry Active: BCDEHL-AOZSP1 Exit Active: BCDEHL-AOZSPI

Block At 0151 (code), A86 = 0174
Entry Active: BCDEHL-AOZSP1 Exit Active: BCDEHL-AOZSPI

Block At 0154 (subr), A86 = 0177

Entry Active: BCDE---AOZSPl Exit Active: —-—-——————————-
stmt#] opcode uses	op	vl	v2	opcode kills	[live regs
2	-———————————-	LHLD]O1F7]	----HL-—————-	BCDEHL-AOZSPI1	
93	-—--HL--———--	SPHL]		---—-—-—-—----—-	BCDEHL-AOZSPI1
95	BCDEHL-AOZSP1	RET		l--—-—-—-————- l---——————-	

Block At 0159 (subr), A86 = 017E
Entry Active: BCDEHL-AOZSPl Exit Active: ------- AOZSPI

All Information Presented Here is Proprietary to Digital Research 32

XLT86 User's Guide Appendix A

|stmt#]| opcode uses | op | v1 | v2 | opcode kills | live regs |

All Information Presented Here is Proprietary to Digital Research 33

XLT86 User's Guide Appendix A

| 102]--DE———-—-———- IPUSH] D] e IBC--—-- AOZSPI |
103	BC--—————————- IPUSH] B]	- l---——- AOZSPI		
104]-———————————- IMvi	C] OB]-C--—--—-———--	-—-——--- AOZSPI		
105]-———————————-	CALL	0005	--—-—------—-	-————- AOZSP1

Block At 0161 (subr), A86 = 0195
Entry Active: ---——--- AOZSPI Exit Active: -—-——————————-

106]----——-————— [POP	BJ	BC-—-—=mmemmm	BC-—--- AOZSPI
107]---————————— IPOP	D]	--DE---—--——-—-	BCDE---AOZSP1
108]---———-————— IPOP	H]	----HL-—-——--	BCDEHL-AOZSP1
109	BCDEHL-AOZSPI	RET	I I--------- I-—--- I

Block At 0165 (subr), A86 = 01AS8
Entry Active: BCDEHL-AOZSPI Exit Active: ------—- AOZSPI

112]----HL-———-—- IPUSH] H]	-———————————-	BCDE---AOZSPI	
113]--DE———-—-——- IPUSH] D]	- IBC-——-- AOZSPI		
114	BC--———-————- IPUSH] BJ	-—————-	---——-- AOZSPI
115]---———-————— IMvi	C] 02]-C----——--—--	--——--- AOZSPI	
116]----——- A-—m—— IMOV	E] A]-—-E--———----	---———-- AOZSPI	
117]--——————————-	CALL]0005]	-—————m - l--———- AOZSPI	

Block At 016E (subr), A86 = 01C1
Entry Active: ---—--- AOZSPI Exit Active: —--——————————-

|stmt#]| opcode uses | op | vi | v2 | opcode kills | live regs |

118]---————————— IPOP	BJ]	BC-—-——-—mm- IBC——--- AOZSPI	
119]---————————— IPOP	D]	--DE---—-——-—-	BCDE---AOZSP1
120]----———————— IPOP	H]	-——-HL-—————-	BCDEHL-AOZSPI
121	BCDEHL-AOZSPI	RET	I I------——-

Block At 0172 (subr), A86 = 01D4
Entry Active: BCDEHL--0ZSP1 Exit Active: BCDEHL-AOZSPI

- P — IMVI | Al ODJ-----—- N— |BCDEHL-AOZSPI |
| 125]--——————————- ICALL|0165] [|BCDEHL-AOZSPI |

Block At 0177 (code), A86 = 01D9
Entry Active: BCDEHL--0ZSP1 Exit Active: BCDEHL-AOZSPI

|stmt#] opcode uses | op | vl | v2 | opcode kills | live regs |

| 126]-———————————- IMVI | Al OA]-—---——- N | BCDEHL-AOZSPI |
| 127]-————————- ICALL]0165] [| BCDEHL-AOZSPI |

All Information Presented Here is Proprietary to Digital Research 34

XLT86 User's Guide Appendix A

Block At 017C (subr), A86 = 01DE

All Information Presented Here is Proprietary to Digital Research 35

XLT86 User's Guide Appendix A

| 128|BCDEHL-AOZSPI |RET | | [[I

Block At 017D (code), A86 = 01DF

Entry Active: BCDEHL-A----- Exit Active: BCDEHL-A-----
stmt#] opcode uses	op	vl	v2	opcode kills	[live regs
132]---——-—- A-———-	ANT	OF]	l---—-- AOZSPI1	BCDEHL-A-----	
133	-———--- A-———- ICPI	OA]	---———--- OZSP1	BCDEHL-AO----	
134	--———-—---- O----]JINC]0189]	--—-—-—-—-———-	BCDEHL-A-----		

Block At 0184 (code), A86 = O1ES8
Entry Active: BCDEHL-A----- Exit Active: BCDEHL-AOZSPI

| 136]------—- — |ADI | 30] |-—————- AOZSP1 |BCDEHL-AOZSPI |
| 137]--——————————- |IVP |018B]| [|BCDEHL-AOZSPI |

Block At 0189 (code), A86 = O1ED
Entry Active: BCDEHL-A----- Exit Active: BCDEHL-AOZSPI

Block At 018B (code), A86 = Ol1lEF
Entry Active: BCDEHL-AOZSPI Exit Active: BCDEHL-AOZSPI

Block At 018E (subr), A86 = 01F2
Entry Active: BCDEHL-AOZSPI Exit Active: --———————————-

|stmt#] opcode uses | op | vl | v2 | opcode kills | [live regs |

| 142|BCDEHL-AOZSPI |RET | I [[I

Block At 018F (subr), A86 = 01F3
Entry Active: BCDEHL-AQZSPl Exit Active: BCDEHL-A-----

| 145]--——-—- AOZSPI |PUSH| PSW] [I|BCDEHL-A-——-—- I
| 146]--——-—- A-———- IRRC | I [E——— AO---— |BCDEHL-A---—- I

All Information Presented Here is Proprietary to Digital Research

36

XLT86 User's Guide

Appendix A
147]-————-- A-———-	IRRC			--——--- AO----	BCDEHL-A-----
148]-—----- A-———- IRRC			--——---- AO----	BCDEHL-A-----	
149	------- A-———- IRRC			--—--—--- AO----	BCDEHL-A-----

All Information Presented Here is Proprietary to Digital Research 37

XLT86 User's Guide Appendix A

Block At 0197 (code), A86 = 0208
Entry Active: BCDEHL------- Exit Active: BCDEHL-AOZSPI

| 151]-—-————————o IPOP | PSW| [E— AOZSP1 |BCDEHL-AOZSPI |
| 152]-———m—mm— - ICALL]017D] [| BCDEHL-AOZSPI |

Block At 019B (subr), A86 = 0211
Entry Active: BCDEHL-AOZSPl Exit Active: - —-——————————-

| 153|BCDEHL-AOZSPI |RET | | |-————mmmm—— - |———— - |

Block At 019C (subr), A86 = 0212
Entry Active: B-DEHL-AOZSP1 Exit Active: BCDEHL-AOZSPI

1=y [—— IMVI | C] 09]-Co—mmmmmmmm | BCDEHL-AOZSPI |
1]] [—— |CALL]0005] [| BCDEHL-AOZSPI |

Block At 01A1 (subr), A86 = 0217
Entry Active: BCDEHL-AOZSPl Exit Active: --——————————-

|stmt#]| opcode uses | op | v1 | v2 | opcode kills | live regs |

| 159|BCDEHL-AOZSPI |RET | | |-————mmmm—— - | ——— - |

Block At 01A2 (subr), A86 = 0218
Entry Active: BCDEHL------- Exit Active: BCDEHL-AOZSPI

| 163]-———————mm - ILDA JO1F5] [E——— N | BCDEHL-A--——— I
| 164]--——-—- N ICPI | 80 [E——— 0ZSPI |BCDEHL-AOZSPI |
| 165]-———————- Z-—- |INZ]01B3]| [I|BCDEHL-AOZSPI |

Block At 01AA (code), A86 = 0222
Entry Active: BCDEHL-AOZSP1 Exit Active: BCDEHL-AOZSPI

|stmt#] opcode uses | op | vl | v2 | opcode kills | [live regs |

Block At 01AD (code), A86 = 0225
Entry Active: BCDEHL-A----- Exit Active: BCDEHL-A-ZSPI

All Information Presented Here is Proprietary to Digital Research

38

XLT86 User's Guide Appendix A

All Information Presented Here is Proprietary to Digital Research 39

XLT86 User's Guide Appendix A

| 170]-—--——- N IORA | Al [E——— AOZSPI |BCDEHL-A-ZSPI |
| 171]-———————- Z-—- |3z]01B3]| [IBCDEHL-A-ZSPI |

Block At 01B1 (subr), A86 = 022C
Entry Active: BCDEHL-A-ZSPl Exit Active: —-———————————-

|stmt#] opcode uses | op | vl | v2 | opcode kills | live regs |

| 173]--—mmmmmmomm ISTC | I [— O--—- |BCDEHL-AOZSPI |
| 174|BCDEHL-AOZSPI |RET | I [P I

Block At 01B3 (subr), A86 = 022E
Entry Active: BC---—-- A-m——— Exit Active: ————-————————-

| 177]----——- — IMOV | E] A]---E-————m—— |BC-E---A-———- I
| 178]---—————————— IMVI | D] 00]--D-—----m—m- |BCDE-—-A--——— I
| 179]-----—- — [INR | Al — A-Z--- |BCDE---A-—--- I
| 180]------—- — ISTA |O1F5] [|BCDE-———————— I
| 183]|---—————————— ILXI | H]0080]----HL---———- |BCDEHL——————— I
| 184]--DEHL-———--- IDAD | D] | -——-HL--O---= |BCDEHL----——- I
| 186]-----——————— IMOV | Al M]---——-- N— |BCDEHL-A--——— I
| 188]------—- — IoRA | Al — AOZSP1 |BCDEHL-AOZSPI |
| 189|BCDEHL-AOZSPI |RET | I [. I

Block At 01C1 (subr), A86 = 0247
Entry Active: B---HL-A-—--- Exit Active: BCDEHL-AOZSPI

|stmt#] opcode uses | op | vl | v2 | opcode kills | 1live regs |

193]---—-—-- A--——- IXRA	A	l--———--—- AOZSP1	B---HL-AOZSPI
194]-—--——-—- . N——	STA J007C]	--—————————-	B---HL-AOZSPI
196]---———--————- ILX1	DJ00O5C	--DE---—---—-	B-DEHL-AOZSPI
197]---————————— IMVvI	C] OF]-C---—-——-—-—-	BCDEHL-AOZSPI	
198]---—————————	CALL]0005] -	BCDEHL-AOZSPI	

Block At 01CD (subr), A86 = 0254
Entry Active: BCDEHL-AOZSPl Exit Active: --——————————-

|stmt#]| opcode uses | op | v1 | v2 | opcode kills | live regs |

| 200]BCDEHL-AOZSPI |RET | | [[I

Block At O01CE (subr), A86 = 0255
Entry Active: BCDEHL-AOZSPI Exit Active: —-——-—-——- AOZSPI

203]-—--HL--————- IPUSH] H] [BCDE---AOZSPI	
204	--DE-—---———- IPUSH] DJ [BC-—-—- AOZSPI
205	BC---———————- IPUSH] B [[E——— AOZSPI	

All Information Presented Here is Proprietary to Digital Research 40

XLT86 User's Guide

Appendix A
206]-———------——- [LXT] D]0O0O5C	--DE---—————-	-——---- AOZSPI1	
207]-———------——- IMVI] C] 14]-C-———----——-	-——----- AOZSPI1		
208]--—————————-—-	CALL]0005]	----——------—--	-—----- AOZSPI1

All Information Presented Here is Proprietary to Digital Research 41

XLT86 User's Guide Appendix A

Block At 01D9 (subr), A86 = 026F
Entry Active: ---—--- AOZSPI Exit Active: -—-——————————-

|stmt#]| opcode uses | op | v1 | v2 | opcode kills | live regs |

209]---————————— IPOP	BJ]	BC-—-——-—mm-	BC——--- AOZSPI
210]---————————— IPOP	D]	--DE-——-———--	BCDE---AOZSPI
211]---————————— IPOP	H]	-——-HL-—————-	BCDEHL-AOZSP1
212	BCDEHL-AOZSPI	RET	I I-------

Block At 01DD (data), A86 = 0282
Entry Active: —--—-—-——-—————- Exit Active: -----———————-

| 215]-———————————- DB]0016] [[I
AT P —— DB]0002| [[——— I
A1) [— IDS |0002| [[—— I
0] [—— IDS]0002| [[—— I
k] [——— IDS]0040] [[I

Block At 0239 (code), A86 = 02DE
Entry Active: BCDEHL-AOZSP1 Exit Active: BCDEHL-AOZSPI

All Information Presented Here is Proprietary to Digital Research 42

XLT86 User's Guide

1
16-bit register translation, 10
8

80 parameter, 6

8080 operation code, 11
8080 program fragments, 9
8080 program origin, 9
8080 register usage, 9
8080 source program, 1
8086 program segment, 9

A

A (A86) parameter, 3
A86 output file, 1
ASM input file, 1
ASM-86, 9

B

B (Block Trace) parameter, 3, 6
Basic Block, 4, 6

Basic Block address, 4

Basic Block Header, 6

C

C (Compact) parameter, 4, 6
code areas, 9

code segments, 5

command line, 3

comment field, 9

CSEG directives, 6

D

data areas, 9

data flow analysis, iii, 1, 4

data segments, 5

differences in assembly language formats, 9
disassemblers, 9

DSEG directives, 6

E

equate statement, 10
error codes, 17

error messages, 17
expression translation, 10
expressions, 9, 10, 11

F
flags, 4

Appendix A

INDEX

|
input file, 1
J

J (jump) parameter, 5
join Blocks phase, 1

L

L (List) parameter, 5

label generation, 5, 9, 12

letter denotations for registers and flags, 4
List Blocks phase, 1, 2

live function, 11

M

M (Memory) register, 10
macros, 1

memory overflow, 18
monitoring the translation, 1, 6

N

N (Number) parameter, 6
NO parameter, 6

0]

operand field abbreviations, 10
operand field translation, 11
operand fields, 9

operation code, 9

ORG statement, 9

output files, 1

output line, 9
overlays, 1, 2
P

P (PRN) parameter, 3
parameter list, 3
parameter syntax, 3
parameters, 2

PIP, 5

PRN file, 1, 17
processed files, 2
program fragments, 9
program graph, 18
program segment, 9
Pseudo-assembly Process error messages, 17

R

R (Return) parameter, 6
register translation, 10
register usage, 9
registers, 4

All Information Presented Here is Proprietary to Digital Research

43

XLT86 User's Guide

repeat loops, 1 T

root module, 1 T (TMP) parameter, 3

S temporary ($$$) file, 1
Translate-86 error messages, 17
Translate-86 phase, 2

translated program format, 9
translation parameters, 3
translation phases, 1

translation table, 11

S (Segment) parameter, 5, 6
Setup Blocks phase, 1

short function, 12

short jump analysis, 5
Symbol Setup phase, 1
syntax, 3

All Information Presented Here is Proprietary to Digital Research

Appendix A

44

	THE TRANSLATION PROCESS
	Input and Output Files
	Translation Phases

	TRANSLATION PARAMETERS
	Parameter Syntax
	The B (Block Trace) Parameter
	The C (Compact) Parameter
	The J (Jump) Parameter
	The L (List) Parameter
	The N (Number) Parameter
	The R (Return) Parameter
	The S (Segment) Parameter
	The 80 Parameter
	The NO Parameter

	TRANSLATED PROGRAM FORMAT AND CONTENT
	Translated Program Format
	Translated Program Content

	XLT86 ERROR MESSAGES
	Pseudo-assembly Process Error Messages
	Translate-86 Error Messages
	Memory overflow

	SAMPLE PROGRAM TRANSLATIONS

